Table 2 Growth performance, feed utilization and survival rate of juvenile Red tilapia *Oreochromis mossambicus* x O. niloticus (initial weight 0.9 g/fish) fed the experimental diets for 12 weeks. Values are mean \pm SD. Values followed by the same superscript letters in the same row are not significantly different (P > 0.05) | Items | Feeding rate (%) | | | | |----------------------------|-------------------------|------------------------|-------------------------|-------------------------| | | 1% | 3% | 5% | 7% | | IBW (g) ¹ | 0.9 ± 0.01 | 0.9 ± 0.01 | 0.9 ± 0.01 | 0.9 ± 0.01 | | $FBW(g)^2$ | $1.47 \pm 0.06^{\rm d}$ | 2.43±0.06° | 3.93 ± 0.15^{a} | 3.63 ± 0.12^{b} | | $WG(g)^3$ | $0.57 \pm 0.06^{\rm d}$ | 1.52±0.07° | 3.03 ± 0.15^{a} | 2.73 ± 0.12^{b} | | $WG\left(\%\right)^{4}$ | 63.3 ± 6.4^{d} | 169.0±8.2° | 337.7±17.3 ^a | 218.3±12.7 ^b | | SGR (%) ⁵ | 0.58 ± 0.05^{d} | 1.18±0.04° | 1.76 ± 0.05^{a} | 1.66±0.03 ^b | | $FI(g)^6$ | 0.81 ± 0.03^{d} | 2.99±0.02° | 5.23 ± 0.30^{b} | 7.50 ± 0.28^{a} | | FCR ⁷ | 1.43±0.15 ^a | 2.00±0.10 ^c | 1.73±0.06 ^b | 2.73 ± 0.15^{d} | | FER ⁸ | 0.70 ± 0.06^{a} | 0.51 ± 0.02^{c} | 0.58 ± 0.02^{b} | 0.36 ± 0.03^{d} | | PER ⁹ | 2.10 ± 0.16^{a} | 1.50±0.07° | 1.71±0.05 ^b | $1.10\pm0.07^{\rm d}$ | | Survival (%) ¹⁰ | 70.7±8.1 ^a | 82.0 ± 10.1^{a} | 95.7±7.5 ^a | 85.7±12.5 ^a | Note: 1 : IBW (g) = initial body weight (g/fish); 2 : FBW (g) = final body weight (g/fish); 3 : WG (g), weight gain (g/fish) = FBW (g) -IBW (g); 4 : WG(%), weight gain % = [FBW - IBW] × 100/ IBW); 5 : FI (g), = amount of feed intake (g/fish); 6 : Feed conversion ratio (FCR) = dry feed consumed/WG(g); 7 : Feed efficiency ratio(FER)=WG/ dry feed consumed); 8 : Protein efficiency ratio (PER)= (WG (g)/protein intake (g)); 9 : Specific growth rate (SGR day $^{-1}$)= [In final BW - In initial BW] × 100/days); 10 : Survival % =([no. of fish at the end of the experiment/no. of fish at the beginning of the experiment] × 100)